Мы строим дом
Поиск по сайту

Гравитационный коллапс. космос и астрономия. Гравитационное сжатие Как происходит коллапс сверхмассивной звезды

Гравитационным коллапсом называется быстрый процесс сжатия вещества под действием собственного притяжения (см. Гравитация). Иногда под гравитационным коллапсом понимают неограниченное сжатие вещества в черную дыру, описываемое общей теорией относительности (релятивистский коллапс).
Части любого тела испытывают взаимное гравитационное притяжение. Однако в большинстве тел его величина недостаточна для возникновения коллапса. Для данной массы тела внутреннее поле гравитационного притяжения тем больше, чем больше его плотность, т. е. чем меньше его размеры. Для того чтобы гравитационное поле стало заметным, необходимо сжать его до колоссальных плотностей.Так, например, для того чтобы произошел гравитационный коллапс Земли, ее плотность должна возрасти до 1027 г/см3, т. е. в триллионы раз превысить ядерную плотность. Однако с ростом массы внутреннее поле гравитационного притяжения также растет и достаточное для коллапса значение плотности уменьшается.
В таких массивных объектах, как звезды, роль сил гравитационного сжатия становится определяющей. Эти же силы вызывают сжатие облаков газа при образовании звезд и галактик. Такое сжатие носит характер своеобразного падения частиц газа к центру образующейся звезды или галактики. В этом смысле говорят о гравитационном коллапсе прото-звезд и протогалактик.
Существование звезд связано с взаимным притяжением их атомов, но в обычных звездах это притяжение уравновешивается внутренним давлением вещества, что и обеспечивает их устойчивость. При высоких температурах и плотностях, характерных для недр звезд, атомы вещества ионизованы и давление вещества обусловлено движением свободных электронов и ионов. На основных, наиболее продолжительных стадиях эволюции звезд такое движение является тепловым. Оно поддерживается выделением энергии при реакциях термоядерного синтеза (см. Звезды). Однако запас термоядерного топлива в звездах ограничен и конечная судьба звезд определяется возможностью равновесия сил гравитационного сжатия и давления остывающего вещества звезды, исчерпавшей весь запас своей тепловой энергии. Такие условия равновесия осуществляются в белом карлике или в вырожденных ядрах звезд с массой меньше 5-10 масс Солнца, где гравитационному сжатию противодействует давление электронов. Но у белого карлика или вырожденного ядра звезды с большей массой плотность электронов становится настолько большой, что они как бы вдавливаются в ядра и, взаимодействуя с ядерным веществом, превращаются в нейтрино. Этот захват электронов ядрами приводит к уменьшению давления электронов, противодействующего гравитационному сжатию, и происходит гравитационный коллапс.
Гравитационный коллапс в белом карлике или вырожденном ядре звезды сопровождается дальнейшим захватом электронов ядрами и интенсивным нейтринным излучением, уносящим практически всю энергию гравитационного сжатия. Давление электронов становится все меньше, поэтому сжатие представляет собой свободное падение вещества к центру звезды. В конечном счете коллапсирующее вещество состоит из одних нейтронов. Возникающее при этом давление нейтронного вещества может уравновесить силы гравитационного сжатия, и гравитационный коллапс закончится образованием нейтронной звезды. Нейтринное излучение при коллапсе в нейтронную звезду может обеспечить эффективную передачу энергии внешним слоям коллапсирующей звезды, достаточной для их сброса с большой кинетической энергией; при этом наблюдается взрыв сверхновой звезды.
Однако гравитационный коллапс массивных звезд с массами, превышающими 5-10 масс Солнца, не заканчивается на стадии нейтронной звезды. С повышением массы нейтронной звезды плотность ее вещества растет и отталкивание нейтронов уже не может обеспечить эффективное противодействие гравитационному сжатию. Коллапс переходит в релятивистский гравитационный коллапс, и образуется черная дыра. Наличие максимальной массы устойчивого белого карлика и нейтронной звезды означает, что массивные звезды (с массой, в 10 раз превышающей массу Солнца) неизбежно закончат свое существование в процессе релятивистского гравитационного коллапса.
Гравитационный коллапс в черную дыру представляет собой явление, в котором эффекты общей теории относительности становятся определяющими. Сам коллапс происходит как свободное падение к центру образующейся черной дыры, но в соответствии с законами общей теории относительности удаленный наблюдатель будет видеть это падение как при все более замедленной киносъемке: для него процесс коллапса будет продолжаться бесконечно долго. При коллапсе в черную дыру меняются геометрические свойства пространства и времени. Искривление световых лучей оказывается столь сильным, что никакой сигнал не может покинуть поверхность коллапси-рующего тела. Вещество, ушедшее под радиус черной дыры, полностью обособляется от остального мира, продолжая, однако, влиять на окружение своим гравитационным полем.

Г. к. звезды - катастрофически быстрое её сжатие под действием собств. сил тяготения - может произойти после прекращения в центр. области звезды термоядерных реакций. С истощением в звезде запасов ядерной энергии и угасанием центрального источника энергии непосредственно нарушается её тепловое, а затем и гидростатическое (механич.) равновесие. При этом ослабляются силы, противодействующие тяготению, и возникают условия для быстрого сжатия звезды. Г. к. рассматривают как один из возможных путей завершения (с 1,2 \mathfrak M_\odot$" align="absmiddle" width="90" height="17">), приводящей к образованию нейтронных звёзд или даже (в случае релятивистского Г. к.) чёрных дыр. Выброс внеш. слоев звезды, возможный при Г. к. её центр. области, приводит к появлению .

Термоядерные реакции служат источником энергии звезды и обеспечивают в ней гидростатич. и тепловое равновесие вплоть до образования в её центр. области атомных ядер группы железа. .Эти ядра имеют наибольшую на нуклон, так что синтез ядер более тяжёлых, чем ядра железа, уже не сопровождается выделением энергии, а, наоборот, требует затрат энергии. Лишённая с этого момента термоядерных источников энергии, звезда не может скомпенсировать потери энергии во внешнее пространство, тем более что к концу "термоядерного" этапа эволюции эти потери чрезвычайно возрастают. К обычным потерям энергии с поверхности звезды (испусканию фотонов фотосферой звезды) здесь прибавляются объёмные потери энергии, обусловленные интенсивным излучением (v ) и антинейтрино () центр. областью звезды. Объёмные потери энергии, как показывают расчёты эволюции звёзд, становятся преобладающими над потерями с поверхности при темп-pax в центре звезды . Для поздней стадии ядерной эволюции достаточно массивной звезды это условие выполняется с избытком - при синтезе ядер группы железа темп-pa в центре звезды с достигает 3 . 10 9 К. У маломассивных звёзд, с массой около нижнего предела , темп-pa в центре в конце ядерной эволюции тоже достигает значения и объёмные потери энергии в виде нейтринного излучения становятся основными.

Нескомпенсированные потери энергии нарушают равновесие звезды. Создаются условия для сжатия её центр. области под действием собств. сил тяготения. Звезда расходует теперь , выделяющуюся при сжатии. Темп-pa в сжимающейся звезде возрастает (см. ). Сначала сжатие звезды идёт медленно, так что условие гидростатич. равновесия ещё выполняется. Наконец, темп-ра достигает таких высоких значений, » (5-10) . 10 9 К, что ядра группы железа теряют устойчивость. Они распадаются на ядра гелия, нейтроны и протоны (на первом этапе распада 56 26 Fe ® 13 4 2 He + 4n - 124,4 МэВ, а при дальнейшем росте темп-ры распадаются и ядра Не: 4 2 Не ® 2n + 2р - 26,21МэВ). Распад ядер требует значит. затрат энергии, т. к. представляет собой как бы всю цепь термоядерных реакций синтеза от водорода до железа, но идущую в обратном направлении (не с выделением, а с поглощением энергии). Темп-pa в недрах звезды всё же растёт (за счёт гравитац. сжатия), но из-за распада ядер железа, требующего затрат энергии, не так быстро, как это было бы необходимо для приостановления сжатия. В результате потерь энергии на нейтринное излучение и распада ядер происходит своеобразный взрыв звезды - взрыв внутрь (иногда в научной литературе его наз. имплозией, в отличие от эксплозии - взрыва наружу, вызванного быстрым высвобождением энергии). При имплозии вещество центр. области звезды падает к центру со скоростью, близкой к скорости свободного падения. Возникающая при этом гидродинамическая волна разрежения втягивает последовательно в режим падения всё более удалённые от центра слои звезды. Начавшийся Г. к. при определённых условиях может затормозиться или даже остановиться, но в ряде случаев может безостановочно продолжаться, переходя в т. н. .

Выяснение всего комплекса условий, приводящих к Г. к.,- задача крайне сложная. Один из важных этапов решения этой задачи - исследование условий гидростатич. равновесия на поздних стадиях эволюции звезды с привлечением ур-ния состояния вещества в звезде.

На всём протяжении эволюц. развития звезды, связанного с термоядерными реакциями в её центр. области, в звезде за редким исключением поддерживается гидростатич. равновесие. Оно заключается в равенстве (в каждой точке звезды и в любой момент времени) сил тяготения и сил отталкивания частиц вещества, обусловленных давлением р , F - = -D р/D r [здесь фигурируют абс. величины этих сил, r - расстояние от центра до рассматриваемой точки звезды, - масса внутри сферы радиуса r, р - плотность вещества, -D р/D r - приближённое выражение радиальной составляющей градиента давления в окрестности рассматриваемой точки]. Усреднённое для всей звезды в целом ур-ние гидростатич. равновесия можно приближённо записать в виде:

где и R - полная масса и радиус звезды, r с и р с - плотность и давление в центре звезды. Это ур-ние позволяет, в частности, оценить темп-ру Т с около центра звезды. Если принять, что вещество там подчиняется ур-нию состояния идеального газа, то , где m - молекулярная масса вещества звезды, R 0 - универсальная . Для звёзд типа Солнца Т с ~10 7 К, для коллапсирующих (более массивных) звёзд она гораздо выше. На рис. 1 показана возможная схема эволюц. пути массивной звезды () от момента её рождения из газово-пылевого облака до момента полного истощения в её центр. области термоядерного топлива и наступления Г. к. (точка разветвления).

Эволюция звезды после "выключения" термоядерных источников энергии, строго говоря, может идти двумя путями: при сохранении гидростатич. равновесия и гидродинамич. путём, когда силы тяготения станут существенно преобладающими (F + >F -). Путь, по к-рому пойдёт эволюция звезды, зависит от того, как давление вещества звезды изменяется с изменением темп-ры и плотности, т. е. от ур-ния состояния вещества. Если увеличение плотности при сжатии вещества силами тяготения не сопровождается достаточно интенсивным ростом давления, то в звезде создаются предпосылки для нарушения гидростатич. равновесия и развития Г. к. Связь давления с плотностью в случае быстрого сжатия вещества (имеющего характер ) имеет вид: р с ~ r g c (g называется показателем адиабаты).

В свою очередь, плотность вещества определяется размерами звезды r c ~ 1/R 3 . Выражение для сил отталкивания может быть записано, следовательно, в виде:

Зависимость сил тяготения от радиуса звезды даётся соотношением:

Из соотношений (2) и (3) видно, что силы тяготения быстрее нарастают с уменьшением радиуса звезды по сравнению с силами давления, если

5 > 1 + 3g или g < 4 / 3 (4),

При g < 4 / 3 любое случайное малое гидродинамич. возмущение типа сжатия будет нарастать. Упругость вещества в этом случае недостаточна для предотвращения Г. к. В противном случае (при g > 4 / 3) гидростатич. равновесие устойчиво: случайно возникшие уплотнения будут рассасываться и затухать. В строгой теории гидростатич. устойчивости звёзд учитывают неодинаковость g для различных слоев звезды. Фактически условия Г. к. наступают, когда в центр. области g < 4 / 3 , а во внеш. слоях ещё выполняется условие g > 4 / 3 . На рис. 2 приведены результаты теоретич. расчётов величины g в зависимости от плотности и темп-ры вещества. Проведённые линии уровня g = 4 / 3 отчётливо выделяют "овраг неустойчивости" (область с g < 4 / 3). Когда в процессе эволюции в "овраг неустойчивости" попадает значит. часть центр. области звезды, начинается её Г. к.


Рис. 2. Диаграмма взаимных превращений различных частиц звёздного вещества и его упругих свойств в зависимости от плотности (r ) и темп-ры (Т с). Области наименьшей упругости вещества (с показателем адиабаты g мин = 1 ,0 и 1,06) лежат вблизи пересечения линий равных весовых концентраций X: I - ядер железа и гелия (слева от линии преобладают ядра железа, справа - гелия, на самой линии X Fe =X He); II - электрон-позитронных пар и атомных электронов (выше этой линии преобладают электроны); III - нейтронов и протонов (выше линии преобладают нейтроны); IV - ядер железа и нейтронов (выше и правее линии преобладают нейтроны). На диаграмме изображены пути центральных точек звёзд: с массой - штриховая линия AА` с началом гравитационного коллапса в точке А; с массой - штриховая линия ВВ` с началом гравитационного коллапса в точке В; с массой - штрих-пунктирная линия СС` (точка С - начало углеродного термоядерного взрыва). Замкнутыми штриховыми линиями со значением g = 1,1 окружены области повышенной неустойчивости; линией, оттенённой штрихами, обозначен "овраг неустойчивости" с g < 4 / 3 . Верхняя часть "оврага неустойчивости" проведена условно из-за трудностей учёта бета-превращений.

Выявление физ. процессов, приводящих к значениям показателя g < 4 / 3 представляет собой одну из важных проблем теории Г. к. При высоких темп-pax и давлениях, характерных для стадии полного прекращения термоядерных реакций в звезде, плотность вещества в центре звезды превышает в миллионы или даже в миллиарды раз плотность твёрдых тел на поверхности Земли. Несмотря на это, звёздное вещество по св-вам близко к идеальному газу, т. к. кинетич. энергия образующих его частиц значительно превышает потенц. энергию их взаимодействия. От обычного идеального газа вещество центр. области звезды отличается тем, что образующие его разнородные частицы (фотоны, электроны, позитроны, протоны, нейтроны и разнообразные сложные атомные ядра) при взаимодействии могут испытывать различные превращения. При столкновении электрона с позитроном происходит их , и рождаются фотоны. В свою очередь, фотоны высоких энергий при столкновении с др. частицами могут рождать пары электрон - позитрон или путём фотоядерных реакций вызывать диссоциацию сложных ядер. Протоны и нейтроны участвуют в разнообразных ядерных реакциях со сложными ядрами, к-рые также могут взаимодействовать между собой. Нуклоны и ядра испытывают ещё различные бета-превращения (см. ). Подобные взаимные превращения частиц при определённой достаточно высокой темп-ре достигают динамич. равновесия (ядерного статистич. равновесия), и это состояние определяет равновесные концентрации всех частиц и все св-ва звёздного вещества, в т. ч. границы и глубину "оврага неустойчивости".

Наряду с превращениями частиц, к-рые протекают с равной вероятностью в прямом и обратном направлениях (так что они уравновешивают друг друга), в конце термоядерной стадии эволюции звёзд значит. интенсивности достигают бета-превращения. В бета-превращениях обязательно участвуют нейтрино и антинейтрино, к-рые сразу же после своего рождения покидают звезду (для них толща звезды прозрачна). Поэтому бета-превращения имеют односторонний характер - реакций взаимодействия нейтрино и антинейтрино с к.-л. другими частицами (напр., захват нейтрино протоном) в звезде не происходит. Односторонний характер бета-превращений означает, что в звёздном веществе нет полного . Количественно вклад бета-превращений особенно существен в левой верхней части "оврага неустойчивости", куда могут попасть менее массивные звёзды, с . Из-за отсутствия термодинамич. равновесия изображённые в этой части рис. 2 линии носят условный характер (они были фактически вычислены с использованием весьма грубого приближения). Строгое определение физ. условий при существенном вкладе бета-превращений требует последовательного расчёта их кинетики, самосогласованного с расчётом эволюции и Г. к. звезды. Тем не менее могло бы устанавливаться т. н. кинетич. равновесие, в к-ром уравновешивались бы все бета-превращения, за исключением тех, к-рые могли бы быть вызваны свободно улетающими нейтрино и антинейтрино. При таком равновесии для быстрых гидродинамических возмущений, за которыми не поспевают бета-превращения, "овраг неустойчивости" мелеет и сужается. А это означает, что могут развиваться только неустойчивости с характерным временем бета-превращений. Поэтому у маломассивных звёзд Г. к. должен развиваться сравнительно медленно. В общем случае задачу развития Г. к. следует решать с учётом кинетики всех бета-превращений.

В любом случае вещество звезды, попадая в "овраг неустойчивости", теряет упругость, и звезда, в конечном счёте, не может противодействовать силам тяготения, что ведёт к развитию Г. к. Строгие расчёты для звезды с массой (масса железного ядра , остальное - кислородная внеш. оболочка) показывают остановку Г. к. при достижении в центре звезды плотности r с ~ 10 13 г/см 3 и темп-ры Т с ~ 10 11 К. После остановки Г. к. начинается процесс образования горячей нейтронной звезды. При этом продолжается довольно медленное увеличение (вся быстрая стадия Г. к. до остановки характеризуется гидродинамич. временем ~0,1 с) центр. плотности до r с ~10 15 г/см 3 и темп-ры Т с ~ 10 12 К (за время » 3с). Затем происходит ещё более медленный процесс охлаждения горячей нейтронной звезды, завершающийся образованием холодной нейтронной звезды, для к-рой масса ещё допустима (см. ).

Такой же расчёт (в рамках той же физ. модели) Г. к. массивной звезды, с (из них масса железного ядра , остальное - кислородная внеш. оболочка), приводит к иному результату. Остановки Г. к. не получается, и быстрая гидродинамич. стадия Г. к. продолжается релятивистским Г. к., т. е. звезда превращается в чёрную дыру. На рис. 2 нанесены траектории центр. точки звезды для обоих обсуждаемых расчётов Г. к.: (BB`) и (АА`). Видно, что остановка Г. к. в случае BB` происходит после пересечения траектории центра звезды с правой (внешней) границей "оврага неустойчивости", где показатель адиабаты g = 4 / 3 . В точке остановки показатель g >> 4 / 3 . В случае АА` траектория проходит (рис. 2) правее траектории ВВ`, и, несмотря на то что g > 4 / 3 после пересечения "оврага неустойчивости", Г. к. даже не тормозится. Т. о., при наличии мощного нейтринного излучения увеличение упругости звёздного вещества ещё недостаточно для остановки Г. к.

К физ. причинам, вызывающим остановку Г. к. в случае , следует отнести прежде всего прекращение всех процессов взаимного превращения частиц, идущих с затратой энергии, и образование большого числа нуклонов из ядер группы железа и ядер гелия. Образовавшийся нуклонный газ (с избытком частично вырожденных нейтронов) значительно повышает упругость вещества, при темн-ре недр Т с > 10 10 К (значение g для такого газа приближается к 5 / 3). Не менее важным фактором следует считать возникающую на определённом этапе сжатия непрозрачность толщи звезды для нейтринного излучения. Нейтрино и антинейтрино, беспрепятственно уходившие до этого из звезды, в новых условиях будут поглощаться веществом звезды. В результате суммарные потери энергии у звезды уменьшатся, к тому же одновременно возникающий перенос энергии нейтринным излучением из центра звезды в её внеш. слои может непосредственно затруднить Г. к. внеш. слоев звезды. Можно считать, что возникновение нейтринной непрозрачности на такой стадии Г. к., когда восстановилась достаточная упругость вещества (g > 4 / 3), способствует остановке Г. к. Теория нейтринных потерь энергии, включая вопросы непрозрачности и переноса энергии нейтринным излучением, явл. одной из главных задач в исследовании Г. к. В принципе остановке Г. к. могут содействовать также вращение и магн. поле звезды, но количественно эти важные эффекты пока учесть довольно трудно.

К моменту остановки Г. к. у звезды образуется резко выраженная гетерогенная структура: сильно сжатое ядро с массой и сравнительно мало сжавшаяся с начала Г. к. оболочка, содержащая остальную массу звезды. Как показывают расчёты, после остановки Г. к. центральной области звезды внеш. слои продолжают падать к центру и, натолкнувшись на плотное ядро, быстро тормозятся. Торможение падающего, или аккрецирующего (см. ), вещества осуществляется в области ударного скачка на границе ядра и падающей оболочки. При достаточно резкой остановке сжатия ядра этот скачок может преобразоваться в мощную , распространяющуюся от границы ядра к периферии звезды. На рис. 3, построенном на основе одного из расчётов Г. к. с очень резкой остановкой для звезды с показано, как по мере распространения ударной волны движение вещества к центру тормозится и сменяется разлётом наружу. Первоначально (рис. 3) ударная волна сформировалась как ударный скачок при в момент 0,56с. Она продолжает существовать до момента 1,75с в виде ударного скачка, пока вещество за её фронтом полностью тормозится. В дальнейшем происходит распространение ударной волны. Её скорость возрастает с приближением фронта волны к поверхности звезды, т. к. она движется из плотных ко всё более разреженным слоям вещества. Ударная волна ускоряется также за счёт детонации ядерного горючего во внеш. слоях звезды. Осн. процессом такого рода, учитываемым в расчёте, явл. превращение ядер 2 16 8 O ® 32 16 S + 16,54 МэВ. В конце концов ударная волна может вызвать отрыв части оболочки от звезды. Примерно так могла бы происходить вспышка сверхновой звезды.

Рис. 3. Распределение скоростей и движения слоев звезды с мaccoй в зависимости от величины , (т. е. доли массы звезды, расположенной глубже данного слоя) в различные моменты гравитационного коллапса. Начало отсчёта времени условное. Самый крутой участок кривых представляет собой фронт ударной волны, распространяющейся к поверхности звезды. На кривой для момента времени 37,6 с отмечена параболическая скорость (отрыва внешних слоев), равная в рассматриваемом случае 3,5 . 10 3 км/с. Все слои звезды правее этой точки образуют впоследствии сброшенную оболочку.

Но в более последовательных расчётах Г. к. с остановкой достаточно мощной ударной волны со сколько-нибудь значительной кинетич. энергией разлёта оторвавшихся слоев не получается. В расчёте Г. к. для звезды с массой (случай ВВ` на рис. 2) вообще не получилось никакого выброса внеш. слоев, даже с учётом эффекта вращения. Наблюдения же, напротив, свидетельствуют о тесной связи нейтронных звёзд-пульсаров и вспышек сверхновых. С этой точки зрения особый интерес представляют исследования Г. к. для звёзд малых масс, приближающихся к т. н. ( для железной звезды и для углеродной). Дело в том, что в этих исследованиях был обнаружен весьма эффективный механизм выброса оболочки звезды (см. раздел 4). На рис. 2 нанесена траектория СС`, изображающая Г. к. для центра звезды с массой к-рый сопровождается выбросом внеш. слоев (качеств. сторону этого эффекта поясняет рис. 3).

Выше уже говорилось, что главным механизмом, приводящим к потере гидростатич. устойчивости маломассивных звёзд, явл. бета-превращения, а точнее - захват электронов ядрами и протонами, т. е. вещества. Ясно, что процесс нейтронизации будет содействовать Г. к., поскольку при захвате электронов снижается электронное давление, а также уносится из звезды в виде нейтрино определённая энергия. Заметим, что внутри маломассивной звезды давление электронов - осн. часть давления вещества (см. начало траектории СС` на рис. 2). Г. к. маломассивных звёзд отличается от Г. к. массивных звёзд ещё в одном отношении. После "сгорания" гелия и образования углеродно-кислородного ядра звезды (рис. 1) её дальнейшая эволюция протекает различно в зависимости от массы образовавшегося ядра. Г. к. массивных звёзд, с , развивается (после образования железного ядра звезды) так, как было описано на примере Г. к. звёзд с и с . В маломассивных звёздах, с , Г. к. может начаться раньше, при выгорании углерода. Расчёты показывают, что это выгорание протекает, как правило, бурно, с нарушением гидростатич. равновесия звезды и переходит в термоядерный взрыв с большим выделением энергии.

Однако, несмотря на взрывное горение углерода и кислорода, этот сложный процесс в конечном счёте может привести всё-таки к развитию Г. к., а не к взрыву звезды. Этому способствуют интенсивная нейтронизация продуктов горения (ядер группы железа) и сопровождающие её значит. потери энергии за счёт нейтринного излучения. Интенсивность указанных процессов быстро растёт с увеличением плотности в центре звезды. Из расчётов следует, что термоядерный взрыв углеродно-кислородной звезды действительно переходит в Г. к., если центр. плотность звезды до начала выгорания превышает значение r с » 10 10 г/см 3 . Принципиальная возможность Г. к. также вытекает из сравнения чандрасекаровского предела для железной звезды () н массы рассматриваемой углеродно-кислородной звезды (). Превышение массы последней над чандрасекаровским пределом явл. необходимым условием Г. к., а г/см 3 - достаточным условием.

Превращение термоядерного взрыва в Г. к. иллюстрирует рис. 4, где изображено изменение со временем радиусов неск. слоев углеродно-кислородной звезды (траектория её центр, точки СС` дана на рис. 2). В момент времени t = 3,3 с (время отсчитывается от момента, когда темп-pa в центре звезды достигла значения 6 . 10 8 К, достаточного для развития взрывного термоядерного горения углерода) радиусы всех слоев резко уменьшаются, что и означает переход взрыва в Г. к.

Развивающийся Г. к. сопровождается всё возрастающим потоком нейтринного излучения, к-рый, частично передавая свою энергию веществу внеш. слоев звезды, значительно ускоряет термоядерное горение остатков углерода в этих слоях. Формируется мощная детонац. волна с положит. скоростями вещества позади фронта, достаточными для отрыва наружной оболочки. Детальный учёт этого механизма в расчётах и показывает, что разлетающейся оболочке передаётся энергия ~10 50 эрг. Затем кинетич. энергия оболочки может увеличиться (но уже в гораздо более медленном темпе, за 10 5 -10 6 с) за счёт эффектов вращения и давления магн. поля до величины ~10 31 эрг, что соответствует энергии оболочки типичной сверхновой звезды. Если в углеродно-кислородной звезде центральная плотность докритическая ( г/см 3), то при термоядерном горении в ней может или спокойно образоваться железное ядро в результате выгорания части вещества, или развиться пульсационный режим термоядерного горения углерода с последующим взрывом звезды. Теория эволюции звёзд показывает, что различие в значениях центр. плотности углеродно-кислородных звёзд, определяющее их дальнейшую судьбу, может быть вызвано условиями развития звёзд в составе тесных двойных систем.

Теория Г. к. приводит, следовательно, к выводу, что со вспышками сверхновых связан коллапс маломассивных углеродно-кислородных звёзд, с массой ок. . Дополнит. анализ показывает, что Г. к. с образованием горячей нейтронной звезды и выбросом (в два этапа) внеш. оболочки можно отождествить со сверхновыми I типа. В то же время взрыв звезды без образования нейтронной звезды можно поставить в соответствие со сверхновыми II типа. Следует всё же заметить, что такие отождествления не вполне однозначны и не исключают др. вариантов. Теоретически возможен Г. к. без вспышки сверхновой, как это было установлено в расчётах Г. к. массивных железных ядер звёзд. При этом процессе Г. к. может завершаться рождением нейтронных звёзд или чёрных дыр.

К сожалению, пока трудно сказать что-либо определённое об относит. частоте различных исходов эволюции звёзд, и в частности о частоте Г. к. Существующая статистика звёзд утверждает, что число звёзд с align="absmiddle" width="63" height="16">, оканчивающих свою ядерную эволюцию, растёт с уменьшением как . В Галактике, согласно этой статистике, для число "умирающих" звёзд за год составляет » 1. Но статистика не учитывает процессов потери массы звёздами в ходе эволюции, а также ряд др. важных эффектов, она, вероятнее всего, преувеличивает частоту Г. к. В то же время вывод о преобладающем вкладе звёзд малых масс в число звёзд, завершающих эволюцию гравитац. коллапсом, кажется правдоподобным. Кроме того, следует подчеркнуть, что масса звезды, о к-рой идёт речь в теории поздних стадий эволюции, на самом деле представляет собой массу углеродно-кислородного ядра звезды, имеющей гетерогенную структуру гиганта с плотным ядром и разреженной оболочкой. Из расчётов эволюции звёзд известно, что масса ядра в неск. раз меньше массы всей звезды (напр., масса ядра, равная , соответствует полной массе звезды ). Пока трудно указать значение наименьшей массы коллапсирующих звёзд, но оно, очевидно, должно превышать чандрасекаровский предел железной звезды ().

Если масса горячей нейтронной звезды такая нейтронная звезда после короткого периода интенсивного нейтринного охлаждения (неск. десятков секунд) не должна испытывать релятивистской Г. к. и может наблюдаться в виде источника постепенно ослабевающего теплового рентг. излучения, а также долгое время в виде пульсара с излучением в диапазоне от радиоволн до гамма-лучей.

В теории Г. к. особенно интересен вопрос о нейтринном излучении. В ходе Г. к. излучаются в виде импульса продолжительностью 10-30 с нейтрино v и антинейтрино с полной энергией). Точка F указывает момент прекращения гидродинамич. расчёта Г. к. Буквами А, В и С обозначены различные фазы Г. к., к-рые характеризуются следующими данными:D t - продолжительность соответствующей фазы Г. к.

Значит. длительность нейтринного свечения объясняется тем, что осн. доля энергии излучается не в процессе быстрой гидродинамич. стадии Г. к., а на последующей стадии аккреции вещества внеш. слоев (фаза В, рис. 5) и охлаждения горячей гидростатически равновесной нейтронной звезды (фаза С). Нейтринный импульс, излучённый коллапсирующей в пределах нашей Галактики звездой, в принципе может быть зарегистрирован на имеющихся уже детекторах нейтринного излучения (см. ). Обнаружение нейтринного импульса стало бы непосредственной наблюдательной проверкой теории Г. к. В частности, оно позволило бы проверить важный вывод теории о возможности Г. к., протекающего без сброса оболочки и, следовательно, без наблюдаемых эффектов типа вспышек сверхновых. Таких процессов в Галактике может происходить, как уже говорилось, » 1 в год.

В процессе Г. к. звёздных ядер с массой, не превышающей массу холодной нейтронной звезды (), эффекты общей теории относительности (ОТО) не очень существенны, хотя их нужно будет учитывать при последующем развитии теории Г. к. Однако эффекты ОТО имеют решающее значение для релятивистского Г. к., к-рым заканчивается эволюция массивных звёздных ядер.

Лит .: Зельдович Я. Б., Новиков П. Д., Теория тяготения и эволюция звезд, М., 1971; Шкловский И. С., Сверхновые звезды и связанные с ними проблемы, 2 изд., М., 1976, с. 398 и посл.; На переднем крае астрофизики, пер. с англ., М., 1979; Имшенник В. С., Надежин Д. К., Конечные стадии эволюции звезд и вспышки сверхновых, в кн.: Итоги науки н техники. Сер. Астрономия, т. 21, М., 1982.

(В.С. Имшенник )


Материал из Юнциклопедии


Гравитационным коллапсом называется быстрый процесс сжатия вещества под действием собственного притяжения (см. Гравитация). Иногда под гравитационным коллапсом понимают неограниченное сжатие вещества в черную дыру, описываемое общей теорией относительности (релятивистский коллапс).

Части любого тела испытывают взаимное гравитационное притяжение. Однако в большинстве тел его величина недостаточна для возникновения коллапса. Для данной массы тела внутреннее поле гравитационного притяжения тем больше, чем больше его плотность, т. е. чем меньше его размеры. Для того чтобы гравитационное поле стало заметным, необходимо сжать его до колоссальных плотностей. Так, например, для того чтобы произошел гравитационный коллапс Земли, ее плотность должна возрасти до 10 27 г/см3, т. е. в триллионы раз превысить ядерную плотность. Однако с ростом массы внутреннее поле гравитационного притяжения также растет и достаточное для коллапса значение плотности уменьшается.

В таких массивных объектах, как звезды, роль сил гравитационного сжатия становится определяющей. Эти же силы вызывают сжатие облаков газа при образовании звезд и галактик. Такое сжатие носит характер своеобразного падения частиц газа к центру образующейся звезды или галактики. В этом смысле говорят о гравитационном коллапсе прото-звезд и протогалактик.

Существование звезд связано с взаимным притяжением их атомов, но в обычных звездах это притяжение уравновешивается внутренним давлением вещества, что и обеспечивает их устойчивость. При высоких температурах и плотностях, характерных для недр звезд, атомы вещества ионизованы и давление вещества обусловлено движением свободных электронов и ионов. На основных, наиболее продолжительных стадиях эволюции звезд такое движение является тепловым. Оно поддерживается выделением энергии при реакциях термоядерного синтеза (см. Звезды). Однако запас термоядерного топлива в звездах ограничен и конечная судьба звезд определяется возможностью равновесия сил гравитационного сжатия и давления остывающего вещества звезды, исчерпавшей весь запас своей тепловой энергии. Такие условия равновесия осуществляются в белом карлике или в вырожденных ядрах звезд с массой меньше 5-10 масс Солнца, где гравитационному сжатию противодействует давление электронов. Но у белого карлика или вырожденного ядра звезды с большей массой плотность электронов становится настолько большой, что они как бы вдавливаются в ядра и, взаимодействуя с ядерным веществом, превращаются в нейтрино. Этот захват электронов ядрами приводит к уменьшению давления электронов, противодействующего гравитационному сжатию, и происходит гравитационный коллапс.

Гравитационный коллапс в белом карлике или вырожденном ядре звезды сопровождается дальнейшим захватом электронов ядрами и интенсивным нейтринным излучением, уносящим практически всю энергию гравитационного сжатия. Давление электронов становится все меньше, поэтому сжатие представляет собой свободное падение вещества к центру звезды. В конечном счете коллапсирующее вещество состоит из одних нейтронов. Возникающее при этом давление нейтронного вещества может уравновесить силы гравитационного сжатия, и гравитационный коллапс закончится образованием нейтронной звезды. Нейт-

ринное излучение при коллапсе в нейтронную звезду может обеспечить эффективную передачу энергии внешним слоям коллапсирующей звезды, достаточной для их сброса с большой кинетической энергией; при этом наблюдается взрыв сверхновой звезды.

Однако гравитационный коллапс массивных звезд с массами, превышающими 5-10 масс Солнца, не заканчивается на стадии нейтронной звезды. С повышением массы нейтронной звезды плотность ее вещества растет и отталкивание нейтронов уже не может обеспечить эффективное противодействие гравитационному сжатию. Коллапс переходит в релятивистский гравитационный коллапс, и образуется черная дыра. Наличие максимальной массы устойчивого белого карлика и нейтронной звезды означает, что массивные звезды (с массой, в 10 раз превышающей массу Солнца) неизбежно закончат свое существование в процессе релятивистского гравитационного коллапса.

Гравитационный коллапс в черную дыру представляет собой явление, в котором эффекты общей теории относительности становятся определяющими. Сам коллапс происходит как свободное падение к центру образующейся черной дыры, но в соответствии с законами общей теории относительности удаленный наблюдатель будет видеть это падение как при все более замедленной киносъемке: для него процесс коллапса будет продолжаться бесконечно долго. При коллапсе в черную дыру меняются геометрические свойства пространства и времени. Искривление световых лучей оказывается столь сильным, что никакой сигнал не может покинуть поверхность коллапси-рующего тела. Вещество, ушедшее под радиус черной дыры, полностью обособляется от остального мира, продолжая, однако, влиять на окружение своим гравитационным полем.

быстрое сжатие и распад межзвездного облака или звезды под действием собственной силы тяготения. Гравитационный коллапс - очень важное астрофизическое явление; он участвует как в формировании звезд, звездных скоплений и галактик, так и в гибели некоторых из них. В межзвездном пространстве существует множество облаков, состоящих в основном из водорода плотностью ок. 1000 ат/см3, размером от 10 до 100 св. лет. Их структура , в частности, плотность непрерывно изменяются под действием взаимных столкновений, нагрева звездным излучением, давления магнитных полей и т.д. Когда плотность облака или его части становится настолько большой, что гравитация превосходит газовое давление, облако начинает неудержимо сжиматься - оно коллапсирует. Небольшие начальные неоднородности плотности в процессе коллапса усиливаются; в результате облако фрагментирует, т.е. распадается на части, каждая из которых продолжает сжиматься. Вообще говоря, при сжатии газа возрастают его температура и давление, что может препятствовать дальнейшему сжатию. Но пока облако прозрачно для инфракрасного излучения, оно легко остывает, и сжатие не прекращается. Однако по мере нарастания плотности отдельных фрагментов их остывание затрудняется и возрастающее давление останавливает коллапс - так образуется звезда, а вся совокупность превратившихся в звезды фрагментов облака образует звездное скопление. Коллапс облака в звезду или в звездное скопление продолжается около миллиона лет - сравнительно быстро по космическим масштабам. После этого термоядерные реакции, происходящие в недрах звезды, поддерживают температуру и давление, что препятствует сжатию. В ходе этих реакций легкие химические элементы превращаются в более тяжелые с выделением огромной энергии (подобное происходит при взрыве водородной бомбы). Выделившаяся энергия покидает звезду в виде излучения. Массивные звезды излучают очень интенсивно и сжигают свое "горючее" всего за несколько десятков миллионов лет. Звездам малой массы хватает их запаса топлива на многие миллиарды лет медленного горения. Рано или поздно у любой звезды топливо заканчивается, термоядерные реакции в ядре прекращаются и, лишенная источника тепла, она остается в полной власти собственной гравитации, неумолимо ведущей звезду к гибели. Коллапс звезд малой массы. Если после потери оболочки остаток звезды имеет массу менее 1,2 солнечной, то его гравитационный коллапс не заходит слишком далеко: даже лишенная источников тепла сжимающаяся звезда получает новую возможность сопротивляться гравитации. При высокой плотности вещества электроны начинают интенсивно отталкиваться друг от друга; это связано не с их электрическим зарядом, а с их квантово-механическими свойствами. Возникающее при этом давление зависит только от плотности вещества и не зависит от его температуры. Такое свойство электронов физики называют вырождением. У звезд малой массы давление вырожденного вещества способно сопротивляться гравитации. Сжатие звезды останавливается, когда она становится размером приблизительно с Землю. Такие звезды называют белыми карликами, поскольку светят они слабо, но имеют сразу после сжатия довольно горячую (белую) поверхность. Однако температура белого карлика постепенно снижается, и через несколько миллиардов лет такую звезду уже трудно заметить: она становится холодным невидимым телом. Коллапс массивных звезд. Если масса звезды более 1,2 солнечной, то давление вырожденных электронов не в состоянии сопротивляться гравитации, и звезда не может стать белым карликом. Ее неудержимый коллапс продолжается, пока вещество не достигнет плотности, сравнимой с плотностью атомных ядер (примерно 3?1014 г/см3). При этом большая часть вещества превращается в нейтроны, которые, подобно электронам в белом карлике, становятся вырожденными. Давление вырожденного нейтронного вещества может остановить сжатие звезды, если ее масса не превышает приблизительно 2 солнечные. Образовавшаяся нейтронная звезда имеет диаметр всего ок. 20 км. Когда стремительное сжатие нейтронной звезды резко останавливается, вся кинетическая энергия переходит в тепло и температура поднимается до сотен миллиардов кельвинов. В результате происходит гигантская вспышка звезды, ее внешние слои с большой скоростью выбрасываются наружу, а светимость возрастает в несколько миллиардов раз. Астрономы называют это "взрывом сверхновой". Примерно через год яркость продуктов взрыва уменьшается, выброшенный газ постепенно охлаждается, перемешивается с межзвездным газом и в следующие эпохи входит в состав звезд новых поколений. Возникшая в ходе коллапса нейтронная звезда в первые миллионы лет быстро вращается и наблюдается как переменный излучатель - пульсар . Если же масса коллапсирующей звезды значительно превышает 2 солнечные, то сжатие не останавливается на стадии нейтронной звезды, а продолжается до тех пор, пока ее радиус не уменьшится до нескольких километров. Тогда сила притяжения на поверхности возрастает настолько, что даже луч света не может покинуть звезду. Сжавшуюся до такой степени звезду называют черной дырой. Такой астрономический объект можно изучать только теоретически, используя общую теорию относительности Эйнштейна. Расчеты показывают, что сжатие невидимой черной дыры продолжается, пока вещество не достигнет бесконечно большой плотности. См. также ПУЛЬСАР; ЧЕРНАЯ ДЫРА.

В космосе происходит много удивительных вещей, в результате которых появляются новые звезды, исчезают старые и формируются черные дыры. Одним из великолепных и загадочных явлений выступает гравитационный коллапс, который заканчивает эволюцию звезд.

Звездная эволюция - это цикл изменений, проходимый звездой за период ее существования (миллионы или миллиард лет). Когда водород в ней заканчивается и превращается в гелий, формируется гелиевое ядро, а сам начинает превращаться в красного гиганта - звезду поздних спектральных классов, которая обладает высокой светимостью. Их масса может в 70 раз превышать массу Солнца. Очень яркие сверхгиганты называются гипергигантами. Помимо высокой яркости они отличаются коротким периодом существования.

Сущность коллапса

Это явление считается конечной точкой эволюции звезд, вес которых составляет более трех солнечных масс (вес Солнца). Эта величина используется в астрономии и физике с целью определения веса других космических тел. Коллапс случается в том случае, когда гравитационные силы заставляют огромные космические тела с большой массой очень быстро сжиматься.

В звездах весом более трех масс Солнца есть достаточно материала для продолжительных термоядерных реакций. Когда субстанция заканчивается, прекращается и термоядерная реакция, а звезды перестают быть механически устойчивыми. Это приводит к тому, что они со сверхзвуковой скоростью начинают сжиматься к центру.

Нейтронные звезды

Когда звезды сжимаются, это приводит к возникновению внутреннего давления. Если оно растет с достаточной силой для того, чтобы остановить гравитационное сжатие, то появляется нейтронная звезда.

Такое космическое тело обладает простой структурой. Звезда состоит из сердцевины, которую покрывает кора, а она, в свою очередь, формируется из электронов и ядер атомов. Ее толщина равна примерно 1 км и является относительно тонкой, если сравнивать с другими телами, встречающимися в космосе.

Вес нейтронных звезд равен весу Солнца. Отличие между ними заключается в том, что радиус у них небольшой - не более 20 км. Внутри них взаимодействуют друг с другом атомные ядра, формируя, таким образом, ядерную материю. Именно давление со ее стороны не дает нейтронной звезде сжиматься дальше. Этот тип звезд отличается очень высокой скоростью вращения. Они способны совершать сотни оборотов в течение одной секунды. Процесс рождения начинается из вспышки сверхновой, которая возникает во время гравитационного коллапса звезды.

Сверхновые

Вспышка сверхновой представляет собой явление резкого изменения яркости звезды. Далее звезда начинает медленно и постепенно угасать. Так заканчивается последняя стадия гравитационного коллапса. Весь катаклизм сопровождается выделением большого количества энергии.

Следует заметить, что жители Земли могут увидеть этот феномен лишь постфактум. Свет достигает нашей планеты спустя долгий период после того, как произошла вспышка. Это стало причиной возникновения сложностей при определении природы сверхновых.

Остывание нейтронной звезды

После окончания гравитационного сжатия, в результате которого сформировалась нейтронная звезда, ее температура очень высока (намного выше, чем температура Солнца). Остывает звезда благодаря нейтринному охлаждению.

В течение пары минут их температура может опуститься в 100 раз. На протяжение последующих ста лет - еще в 10 раз. После того, как снижается, процесс ее охлаждения существенно замедляется.

Предел Оппенгеймера-Волкова

С одной стороны, этот показатель отображает максимально возможный вес нейтронной звезды, при котором гравитация компенсируется нейтронным газом. Это не дает возможность гравитационному коллапсу закончиться появлением черной дыры. С другой стороны, так называемый предел Оппенгеймера-Волкова является одновременно и нижним порогом веса черной дыры, которые были образованы в ходе звездной эволюции.

Из-за ряда неточностей сложно определить точное значение данного параметра. Однако предполагается, что оно находится в диапазоне от 2,5 до 3 масс Солнца. На данный момент, ученые утверждают, что самой тяжелой нейтронной звездой является J0348+0432. Ее вес составляет более двух масс Солнца. Вес самой легкой черный дыры составляет 5-10 солнечных масс. Астрофизики заявляют о том, что эти данные являются экспериментальными и касаются только на данный момент известных нейтронных звезд и черных дыр и предполагают возможность существования более массивных.

Черные дыры

Черная дыра - это один из самых удивительных феноменов, которые встречаются в космосе. Она представляет собой область пространства-времени, где гравитационное притяжение не позволяет никаким объектам выйти из нее. Покинуть ее не способны даже тела, которые могут двигаться со скоростью света (в том числе и кванты самого света). До 1967 года черные дыры назывались «застывшими звездами», «коллапсарами» и «сколлапсировавшими звездами».

У черной дыры есть противоположность. Она называется белой дырой. Как известно, из черной дыры невозможно выбраться. Что касается белых, то в них нельзя проникнуть.

Помимо гравитационного коллапса, причиной образования черной дыры может быть коллапс в центре галактики или протогалактического глаза. Также существует теория, что черные дыры появились в результате Большого Взрыва, как и наша планета. Ученые называют их первичными.

В нашей Галактике есть одна черная дыра, которая, по мнениям астрофизиков, образовалась из-за гравитационного коллапса сверхмассивных объектов. Ученые утверждают, что подобные дыры формируют ядра множества галактик.

Астрономы Соединенных Штатов Америки предполагают, что размер больших черных дыр может быть существенно недооценен. Их предположения основываются на том, что для достижения звездами той скорости, с какой они двигаются по галактике М87, находящейся в 50 миллионах световых лет от нашей планеты, масса черный дыры в центре галактики М87 должна быть не менее 6,5 миллиардов масс Солнца. На данный момент же принято считать, что вес самой большой черный дыры составляет 3 миллиарда солнечных масс, то есть более чем в два раза меньше.

Синтез черных дыр

Существует теория, что эти объекты могут появляться в результате ядерных реакций. Ученые дали им название квантовые черные дары. Их минимальный диаметр составляет 10 -18 м, а наименьшая масса - 10 -5 г.

Для синтеза микроскопических черных дыр был построен Большой адронный коллайдер. Предполагалось, что с его помощью удастся не только синтезировать черную дыру, но и смоделировать Большой Взрыв, что позволило бы воссоздать процесс образования множества космических объектов, в том числе и планеты Земля. Однако эксперимент провалился, поскольку энергии для создания черных дыр не хватило.